Center for diffusion of mathematic journals

 
 
 
 

Actes des rencontres du CIRM

Table of contents for this issue | Previous article | Next article
Frank Bauer; Bobo Hua; Jürgen Jost; Shiping Liu
Generalized Ricci curvature and the geometry of graphs
Actes des rencontres du CIRM, 3 no. 1: Discrete curvature: Theory and applications (2013), p. 69-78, doi: 10.5802/acirm.56
Article PDF

Bibliography

[1] F. Bauer, F. M. Atay & J. Jost, “Synchronized chaos in networks of simple units”, EPL (Europhysics Letters) 89 (2010) no. 2
[2] Frank Bauer, “Normalized graph Laplacians for directed graphs.”, Linear Algebra Appl. 436 (2012) no. 11, p. 4193-4222 Article |  MR 2915277 |  Zbl 1241.05066
[3] Frank Bauer, Fatihcan M. Atay & Jürgen Jost, “Synchronization in discrete-time networks with general pairwise coupling.”, Nonlinearity 22 (2009) no. 10, p. 2333-2351 Article |  MR 2539756 |  Zbl 1171.05355
[4] Frank Bauer & Jürgen Jost, “Bipartite and neighborhood graphs and the spectrum of the normalized graph Laplace operator.”, Commun. Anal. Geom. 21 (2013) no. 4, p. 787-845 Article |  MR 3078942 |  Zbl 1290.05100
[5] Frank Bauer, Jürgen Jost & Shiping Liu, “Ollivier-Ricci curvature and the spectrum of the normalized graph Laplace operator”, Mathematical research letters 19 (2012) no. 6, p. 1185-1205  MR 3091602
[6] V.N. Berestovskij & I.G. Nikolaev, Multidimensional generalized Riemannian spaces., Geometry IV. Non-regular Riemannian geometry. Transl. from the Russian by E. Primrose, Berlin: Springer-Verlag, 1992  MR 1263965 |  Zbl 0781.53049
[7] D. Burago, Yu. Burago & S. Ivanov, A course in metric geometry., Providence, RI: American Mathematical Society (AMS), 2001  MR 1835418 |  Zbl 0981.51016
[8] Fan R.K. Chung, Spectral graph theory., Providence, RI: AMS, American Mathematical Society, 1997  MR 1421568 |  Zbl 0867.05046
[9] Matt DeVos & Bojan Mohar, “An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture”, Transactions of the American Mathematical Society 359 (2007) no. 7, p. 3287-3300 (electronic)  MR 2299456 |  Zbl 1117.05026
[10] C. Fr. Gauß, “Allgemeine Flächentheorie. (Disquisitiones generales circa superficies curvas.) (1827.).”, Deutsch herausgeg. von A. Wangerin. 5. Aufl. Leipzig: Akad. Verlagsges., 64 S. 8 (1921). (Ostwalds Klassiker der exakten Wissenschaften, Nr. 5.) (1921). 1921  JFM 48.0008.01
[11] Bobo Hua, Jürgen Jost & Shiping Liu, “Geometric analysis aspects of infinite semiplanar graphs with nonnegative curvature”, arXiv.org (2011)  MR 2775397
[12] Jürgen Jost, Riemannian geometry and geometric analysis. 6th ed., Berlin: Springer, 2011 Article |  MR 2829653 |  Zbl 1227.53001
[13] Jürgen Jost, Mathematical methods in biology and neurobiology., London: Springer, 2014 Article |  MR 3157168
[14] Jürgen Jost & Shiping Liu, “Ollivier’s Ricci curvature, local clustering and curvature dimension inequalities on graphs”, Discrete and Computational Geometry 51 (2014) no. 2, p. 300-322  MR 3164168
[15] Yong Lin & Shing-Tung Yau, “Ricci curvature and eigenvalue estimate on locally finite graphs”, Mathematical research letters 17 (2010) no. 2, p. 343-356  MR 2644381 |  Zbl 1232.31003
[16] Yann Ollivier, “Ricci curvature of Markov chains on metric spaces”, Journal of Functional Analysis 256 (2009) no. 3, p. 810-864  MR 2484937 |  Zbl 1181.53015
[17] Yann Ollivier, A survey of Ricci curvature for metric spaces and Markov chains., Probabilistic approach to geometry. Proceedings of the 1st international conference, Kyoto , Japan, 28th July – 8th August, 2008, Tokyo: Mathematical Society of Japan (MSJ), 2010, p. 343–381  MR 2648269 |  Zbl 1204.53035
[18] Bernhard Riemann, Bernhard Riemann “Über die Hypothesen, welche der Geometrie zu Grunde liegen”. Historisch und mathematisch kommentiert von Jürgen Jost., Berlin: Springer Spektrum, 2013 Article |  Zbl 1272.01002 |  JFM 47.0770.01
[19] Duncan J Watts & Steven H Strogatz, “Collective dynamics of ‘small-world’ networks”, nature 393 (1998) no. 6684, p. 440-442
Copyright Cellule MathDoc 2019 | Credit | Site Map