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Application of discrete curvatures
to surface mesh simplification
and feature line extraction

Alexandra Bac, Jean-Luc Mari, Dimitri Kudelski, Nam-Van Tran, Sophie Viseur,
and Marc Daniel

Abstract
We present two applications of discrete curvatures for surface mesh processing. The

first one deals withÊsimplifying a mesh while preserving its sharp features. The second
application can be considered as a dual problem, as we investigate ways to detect feature
lines within a mesh. Both applications are illustrated with valuable results.

1. Introduction

Estimating shape of discrete objets known by a triangular approximating mesh or even by a
point cloud is a relevant problem in the numerous software handling 3D objets. The problem has
rather old origins, since one finds its first elements in the works of Gauss and Legendre. The first
recent work on the subject was proposed by Alexandrov ([2]). Shape analysis are based on discrete
curvature computations and different approaches exist to obtain these second order estimators (see
for example [1] for the description of some estimators and results about convergence published in
the literature).

We present in this paper two disconnected applications of discrete curvatures for surface mesh
processing to illustrate the wide range of information which can be received from theses estimators.
The first one deals withÊsimplifying a mesh while preserving its sharp features. Through the
quadratic error metric introduced by Garland et al.,Êsuch a simplification can be performed by an
edge collapse process guided by the metric. Such an approach leads to highÊquality simplification
but remains slow and costly both in terms of space and time. We introduce a two-step method
in whichÊwe perform an initial adaptive cell segmentation guided by the curvature and direction
of each cell (computed by PCA).ÊThis pre-segmentation according to local curvatures preserves
the quality of simplified meshes while reducing computingÊtime by a factor 3 to 4. The second
application can be considered as a dual problem, as we investigate ways to detect feature lines
within a mesh. Robust extraction of the feature lines of aÊ3D surface model is a challenging
problem. Classical approaches generally rely on curvature derivatives, leading to the detection
of a salient part as multipleÊsegments despite the fact that it visually appears as a single and
fully connected element. We propose a two-step method aiming at extracting feature lines onÊ3D
meshes with connectivity preservation. First, all the mesh vertices are labeled according to their
curvature values in order to construct regions of interestÊon the discrete surface. The second step
consists in a skeletonization directly on the mesh that corresponds to a homotopic thinning of
the previouslyÊbinarized areas. Consequently, the resulting lines are highly connected due to the
topological properties of the thinning operator.

Text presented during the meeting “Discrete curvature: Theory and applications” organized by Laurent Najman
and Pascal Romon. 18-22 novembre 2013, C.I.R.M. (Luminy).
Key words. geometric modeling, discrete curvature, feature extraction, mesh processing.
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2. Surface Mesh Segmentation

2.1. Context. Our work originates in the study of triangular mesh surfaces originated from geol-
ogy and geologic surface modelling (as part of a collaboration with the IFP - French Institute of
Petroleum). Our data, obtained by physical measures, are typically inhomogeneous, sparse, noisy
and voluminous. Therefore, we are interested in the improvement of such surfaces and more partic-
ularly in the detection and filling of holes and faults. However, most improvement algorithms are
both time and space consuming and thus, it is fundamental to simplify, smooth and homogenize
data before any further treatment while preserving curvatures and critical areas such as faults (see
[4]).

The present work was undertaken in this context: our hybrid mesh simplification method al-
lies both vertex clustering and iterative edge collapse techniques. These approaches are actually
complementary: iterative edge contraction (based on quadratic error metrics, see [10], ([11]), com-
pared to vertex clustering approaches, leads to results of good quality but proves very costly both
in terms of time and space. Vertex clustering algorithms (see for instance [20], [7], [17]) are simple,
light and efficient methods but they hardly take into account the local geometry of the surface.
Therefore, our idea was to combine both an adaptive segmentation step followed by an iterative
edge collapse process (this last step ends when the expected simplification rate is reached).

The paper is organized as follows: in section 2.2, we introduce our two step method, while
sections 2.3 and 2.4 respectively detail each step. Section 3.4 emphasizes the very interesting
results we obtained.

2.2. Method General presentation. Our work starts from an observation: the approaches to
triangular mesh simplification are various and actually each of them is relevant in its own field. On
the one hand, vertex clustering approaches are particularly interesting in terms of time and space
consumption and will be more efficient for low simplification rates. On the other hand, iterative
edge contraction is slower and requires more memory, but produces better results (specially for
high simplification rates).

The purpose of our algorithm is to conciliate the advantages of both approaches in order to
efficiently handle models of any size while preserving the quality of the resulting approximations.

The underlying idea of our algorithm is to combine a first adaptive segmentation step with a
second iterative edge collapse step.

2.2.1. Vertex grouping: spatial adaptive clustering. The first step of our algorithm consists in a
vertices grouping step. As we have explained previously, in order to obtain satisfactory results, it
is necessary to take into account the local geometry of the surface and hence to use an adaptive
approach. However, if the original data is inhomogeneous and if some areas of the original surface
are sparse, a purely adaptive approach can lose too many informations in these areas. Therefore,
in order to avoid such problems, our algorithm starts from a rough regular grid. This initial
grid is then refined by successive approximations: splitting planes are determined by a principal
component analysis and inserted in the cells where more detail is necessary (see section 2.3.2).

In order to split cells efficiently, it is necessary to define a priority for their treatment. We chose
to estimate the absolute curvature at each vertex (we use the estimation by Meyer et al. [19], see
section 2.3.1). The indicator attached to a cell is the sum of the absolute curvatures of its vertices;
cells are processed according to this indicator.

Last, a representative vertex is computed for each cell (by minimization of the quadratic error
metric associated to the cell), and a topology is rebuilt over these vertices, inherited from the
initial topology (see section 2.3.2).

2.2.2. Iterative edge collapse. Starting from the intermediate approximation of the mesh obtained
by vertices grouping together with the quadratic error matrices previously computed, an iterative
edge collapse process is applied in order to produce a smaller and smoother simplification (see
section 2.4).

2.3. Vertex clustering : adaptive segmentation.
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2.3.1. Discrete curvatures. A triangular mesh is a piecewise linear surface. Therefore, its curvature
(in the sense of differential geometry) is null everywhere except on the edges where it is not
defined. However, it can be interesting to consider such a surface as a discrete approximation of a
continuous surface. In this perspective, one can define discrete curvature indicators; ideally these
discrete indicators should converge to the continuous ones as the mesh density increases. Several
definitions have been proposed for such discrete curvature indicators (see [8], [19], [24]). We chose
to use the definition by M. Meyer and al. ([19]) as it constitutes a good trade-off between quality
and complexity (convergence results have been formally obtained by G. Xu in [26]).

For any vertex v, we use Meyer’s estimates to compute both mean curvature H and Gaussian
curvature K at v. Let κ1 and κ2 be the principal curvatures at vertex v, then: κ1κ2 = K and
κ1 + κ2 = 2H. Therefore κ1 and κ2 are the roots of the polynomial X2 − 2H · K + K. The
absolute curvature at v is defined by: Kabs = |κ1|+ |κ2|. In our algorithm, this indicator is used
throughout the vertex clustering process. Figure 2.1 presents absolute curvature fields for both a
geological surface and the well known rocker arm model.

Figure 2.1: Discrete absolute curvature fields: left, a rocker arm - right, a geolog-
ical surface

2.3.2. Adaptive segmentation. The spatial vertex partition is technically handled using a forest of
BSP trees in order to control efficiently the size of the resulting mesh. Provided that each leaf of
the BSP trees eventually produces a vertex, the leaves of the BSP tree are subdivided until the
desired number of vertices is reached.

This process consists of three steps: initialization, adaptive segmentation, and last post-processing.
Let us now detail each of them.
Initialization. After loading the mesh, the initialization step consists both in regularly segmenting
the surface (subdividing the whole mesh by a 3D regular grid) and in computing for each vertex
the corresponding absolute curvature indicator. The number of trees created corresponds to the
number of cells of the uniform grid used for segmentation. Each root of this forest maintains a list
of vertices and an absolute curvature value (defined as the sum of the absolute curvatures at the
vertices of the cell).

Note that the size of the uniform grid does not directly control those of the resulting segmented
mesh: this control arises from the adaptive segmentation step.

When the input data are voluminous, it is important that the size of the regular grid cells be
small enough to simplify and accelerate the adaptive segmentation step. Moreover, in the sparse
areas, the initial uniform clustering step prevents that too distant vertices be grouped by adaptive
segmentation (which would result in distortions).
Adaptive segmentation of the mesh. Once the surface has been segmented by means of a regular
grid (as described previously) we obtain an array of n BSP trees (where n is the number of cells of
the initial regular grid). Moreover, these trees are sorted in a priority queue ordered by decreasing
absolute curvature value.

The BSP tree is then iteratively updated as follows (let n be the number of leaves of the forest
and let m be the number of vertices required for the simplified mesh):

While n < m:
(1) chose the leaf of maximal absolute curvature
(2) create a subdivision plane by PCA analysis
(3) subdivide the leaf according to this plane and update the BSP tree
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In order to determine a subdivision plane appropriate to the repartition of vertices in the cell
(see [11]), we use a principal component analysis of the normals of the cell (see [13]).

Let us recall the main results on principal component analysis. Let {x1, . . . , xn} be a set of
vertices. The covariance matrix of this set is defined by:

Z = 1
n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>

where v̄ denotes the average of the set {x1, . . . , xn}.
The eigenvectors of this matrix give the main variation directions of the set of vectors (for a

cloud of points inscribed in a rugby ball, these directions are the axes of the ball). The eigenvector
associated to the largest (resp. smallest) eigenvalue corresponds to the direction in which vectors
spread out1 the most (resp. the least).

In our setting, at each step of the adaptive process, the strongly bent cells are split in order to
decrease their curvature as much as possible. Ideally, the subdivision plane should be orthogonal
to the direction of maximal curvature (see figure 2.2). However, contrarily to figure 2.2, we are not
interested in smooth surfaces but in cells issued from a triangular mesh. Therefore, it is necessary
to find a discrete approximation of principal directions.

Figure 2.2: Principal curvatures on smooth surfaces: (in red, direction of maximal
curvature - in blue, direction of minimal curvature)

Normal curvature in direction τ is the normal component of acceleration in this direction.
Therefore, principal directions correspond to directions (in the tangent plane) of minimal and
maximal variation of the normal vector.

In the discrete case, principal component analysis of the set of normals of the cell provides the
main spreading directions of this set. Let e1, e2 and e3 be unitary eigenvectors of the covariance
matrix, associated to eigenvalues λ1 < λ2 < λ3 (eigenvalues and eigenvectors are computed with
the Jacobi method [25]) . Direction e1 is that of minimal variance, therefore it approximates the
average normal vector of the cell. Direction e3 (orthogonal to e1) is that of maximal variance.
Thus it approaches the principal direction of maximal curvature and we will take e3 to be the
normal of the splitting plane.

Moreover, the affine subdivision plane should be inserted around the vertex of maximal curva-
ture; but in order to split the cell efficiently, this vertex should not be too close from the border.
Therefore, we insert the splitting plane at the barycenter of the vertices weighted by their
absolute curvature. The resulting clustering is quite satisfactory both for large and small cells
(see figure 2.3).

Once the subdivision plane is determined, the leaf corresponding to the considered cell in the
BSP tree is split into two new leaves. Vertices of the original cell are assigned to one of these leaves
depending on their position with respect to the splitting plane. Then, we assign each triangle to
the set of cells its vertices belong (thus, a triangle generally belongs to up to three cells). The
discrete surfaces we are studying are topologically connected. However, nodes can contain distinct
disconnected components. In such a case, replacing the vertices of the cell by a single vertex would
produce a non-manifold mesh; thus we test the connectivity of nodes and eventually split the non
connected leaves into their connected components.

1The direction in which vectors spread out the most is actually the direction of maximal variance
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Figure 2.3: Splitting planes for small cells (top) and a 300 vertices cell

The following test is applied to each leaf of the BSP tree; the algorithm uses a list L (initially
containing all the vertices of the leaf) and a queue f (initially empty).

• Get the head of L into v
• Insert v into f
• While f is not empty :

– Get the head of f into v
– For any v′ neighbor of v:

if v′ belongs to L then
∗ Insert v′ into f
∗ Remove v′ from L

At the end of this test, if L is empty, the cell contains a single connected component and thus,
the simplification process goes on normally. If L is not empty, the cell contains disconnected
components. The leaf is split into two new leaves respectively containing the vertices still present
in L and the others. The topological test goes on on the first set until all the connected components
have been identified.

In spite of its cost, this test is necessary to guarantee the topological properties of the sim-
plified surface. Figure 2.4 presents both the uniform cells and those obtained after the adaptive
subdivision process.

Figure 2.4: Results of the adaptive subdivision process: left, uniform clustering -
right, adaptive clustering
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Post-processing. Once the cells have been split and the expected decimation rate is reached, a
representative vertex must be computed for each of them (together with an appropriate topology,
inherited from the original mesh).

In order to approximate cells as precisely as possible, we use a method similar to [7], [17]
and [22]. For each cell, we define a quadratic form (called quadratic error metric) estimating the
distance between any point of space and the cell. The optimal position of the representative vertex
is obtained by minimization of this quadratic form.

Let us now define this quadratic form. For any triangle t in the cell, let Pt be the plane defined
by t, the quadratic form Qt : R3 → R associated to t is defined by Qt(v) = d(v,Pt)2. The cartesian
equation of Pt can be written: n>v + d = 0 where n denotes the unitary normal of t and d is a
constant. The distance d(v,Pt)2 can thus be written as d(v,Pt)2 = v>(nn>)v+ 2(dn>)v+d2. Let
us define:

Qt(v) = v>Atv + 2B>t v + C

with At = nn>, Bt = dn> and Ct = d2.
The quadratic form associated to a cell is the sum of the forms associated to each of its triangles.

As a consequence, it can also be written: Q(v) = v>Av+2B>v+C. Figure 2.5 presents quadratic
error metrics for different cells. The red axes represent the axes of Q; they originate at the point
vmin minimizing Q (let εmin = Q(vmin)). The isosurface Q = 1.5× εmin is represented in black.

Observe that the axes produced by the principal component analysis of the cell (represented in
blue) are quite similar to the axes of the quadratic error metric2.

Figure 2.5: Quadratic error metric for different cells - top: a saddle cell - bottom:
a convex cell

We have dQ(v).h = 0 and as matrix A is symmetric and non negative, minimizing Q comes to
solving Av + B = 0. This linear system is solved by singular values decomposition: A = UΣV >
where Σ is a diagonal matrix and U and V are orthogonal matrices. Let us define matrix Σ+ by:

(Σ+)i,j =
{

1
Σi,j

if Σi,j 6= 0
0 else

Let x̂ be the barycenter of the cell. The closest point to x̂ satisfying equation Ax+B = 0 is given
by:

x = x̂− V Σ+U>(B +Ax̂)

2Which is not so surprising as

A =
∑

t∈cell

ntn>
t whereas Z = 1

k − 1

∑
t∈cell

(nt − n̄)(nt − n̄)>

where nt denotes the normal of triangle t and n̄ the average normal of the cell.
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Once this representative vertex is determined for each cell, it remains to rebuild a topology over
these vertices, inherited from the initial topology of the surface. The algorithm is as follows:

For any face f in the initial mesh:
• if f belongs to three different cells, it is kept,
• otherwise, it is degenerate (reduced to a segment or vertex in the new mesh) and
therefore, it is removed.

The remaining faces generate the topology over the set of representative vertices and the
quadratic error metric of each cell becomes that of its representative vertex.
Let us point out that this post-processing (also used by [7], [17] and [22]) does not guarantee

the manifoldness of the result (only that generally, it is manifold). The following example (figure
2.6) illustrates such a topological problem. The initial mesh (drawn in black on the left figure) is
split into four cells and thus, the simplified mesh (in red) is not a manifold. Flipping edge (e, i)
solves the problem (see right figure).

Figure 2.6: Heuristic for the well known topological problem (non-manifoldness):
left, the original mesh - right, the corrected mesh (an edge has been flipped) which
gives rise to a manifold simplified mesh

Our idea is to detect and avoid edges causing non-manifoldness, and actually, edges of the
original mesh belonging to two triangles that will be non degenerate are one of the main cause for
such problems (as they produce crossing edges). Therefore, before building the topology of the
simplified mesh, we apply the following heuristic to the initial mesh:

(1) select the edges (v1, v2) of the initial mesh incident to two different non degen-
erate triangles ((v1, v2, v3) and (v1, v2, v4)); these edges are responsible for non-
manifoldness

(2) for each of these edges:
if (v3, v4) belongs to a single cell

flip (v1, v2) ((v1, v2) is replaced by (v3, v4)):
In the previous example, only edge (e, i) is concerned and its flip makes the simplified mesh a
manifold surface.

All this data (representative vertices, topology and quadratic error metric) is transmitted to
the second step of our simplification algorithm.

2.4. Iterative edge collapse. The second step of our algorithm consists in simplifying more
finely (by iterative edge collapse) the intermediate mesh previously obtained. We apply the method
introduced by Garland and al. ([10]) with the quadratic error metrics previously computed.

Contracting a pair of vertices (v1, v2)→ v̄ consists in replacing the vertices v1 and v2 by a new
vertex v̄ minimizing the resulting error (where error is measured with the quadratic error metric
just described). Vertex v̄ is then linked with the neighbors of v1 and v2.

Let us now come into details. The quadratic error made on the edge (v1, v2) is estimated by
Q(v1,v2)(v) = Qv1(v) +Qv2(v). The algorithm is as follows:
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• For any edge (v1, v2), compute v̄ the vertex minimizing error Q(v1,v2)(v). The cost
of contraction (v1, v2)→ v̄ is defined as Q(v1,v2)(v̄).

• Order the pairs in a stack by increasing order.
• While the desired decimation rate is not reached:

– remove the pair (v1, v2) of lower cost from the stack,
– contract this pair; the quadratic error metric associated to the new vertex v̄ is
Qv̄ = Qv1 +Qv2

– update the contractions (position of the optimal vertices) and their costs for the
1-neighbor ring of v̄

2.5. Results. The performances of the simplification process strongly depend on the following
parameters: first the size of the intermediate mesh (that is the simplified mesh obtained after the
first step), second, the size of the uniform grid.

The size of the uniform grid must not be too small, otherwise, the following adaptive subdivi-
sion makes no more sense and wouldn’t improve uniform segmentation anymore. However, this
parameter provides a control over the errors made by adaptive segmentation: at worst, after the
adaptive segmentation step, the size of the cells equals those of the grid. In practice, a good choice
for the size of the cells is to take them between 1.5 and 2 times the average length of the edges. As
for the size of the intermediate mesh, we experimentally choose a ratio between 0.5 and 0.8 of the
size of the initial mesh. Both parameters must actually be chosen in order to let enough "place"
to both steps to work over the data.

As one can observe (figure 2.7 and 2.8, the simplified surfaces are visually very satisfactory;
actually, they are very close to those obtained by a pure iterative edge contraction - this will
illustrated when studying the Hausdorff distance between the initial surface and the simplified
one. Observe that the sharp edges are well preserved. For geological surfaces, it is essential as

Figure 2.7: The rocker arm model simplified by our method: initial model, 40k
vertices (left) - simplified model, 5k vertices, Dmax = 0.00029, Davg = 0.0000345
(right) - size of the uniform grid: 41x24x78, size of the intermediate mesh: 20088
vertices

these characteristic lines are of particular interest for the geological interpretation of surfaces.

Figure 2.8: A geological surface simplified with our method: initial model, 112k
vertices (left) - simplified model, 3k vertices - size of the uniform grid: 151x188x27,
size of the intermediate mesh: 56136 vertices

In order to estimate the quality of our results, we have first compared them with those obtained
by Shaffer and Garland with their mixed approach ([11]). The tests have been performed with two
models: the “lucky lady” model (500k vertices) and the “dragon” model (437k vertices). Table 2.9
presents the numerical results obtained for this comparison.
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Figure 2.9: Numerical comparison between our algorithm and Garland and al. 2002.

Figure 2.11 and 2.10 present the related graphical results. Observe that besides the numerical
results, our method visually preserves well the sharp folds of the models and produces regular
meshes.

Figure 2.10: Comparison of our method and Garland and al. 2002 - the "venus"
model (134k vertices) - simplified model: 20K vertices

In order to estimate the quality of our simplified meshes, we have compared them with surfaces
obtained by the pure iterative edge collapse algorithm ([10]). Figure 2.12 presents running times
and error maps for both of these algorithms.

Therefore, the quality of our results is similar to [10] whereas our running time is three times
lower.

3. Feature Line Extraction

3.1. Context. The skeleton is a robust shape descriptor faithfully characterizing the topology
and the geometry of an object. This notion is widely used for various applications such as video
tracking [9], shape recognition [27], surface sketching [18], and in many other scientific domains.
Several techniques have been proposed to extract the skeleton from binary 2D images [28], 3D
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Figure 2.11: Comparison of our method and Garland and al. 2002 - the "lucky
lady" model (500k vertices) - simplified model: 100K vertices

Figure 2.12: Comparison of the map of errors for our method and Garland and
al. 1999 - the "venus" model (134k vertices)

closed meshes defining a volume [3], or 3D cubic grids [16]. However few have been dedicated to
the extraction of skeletons from a binary information located on an arbitrary triangulated mesh.
Rössl et al. [21] have presented a method in which some mathematical morphology operators have
been ported to triangulated meshes. The main interest of this approach is to combine an efficient
computation and a simple implementation. However, regarding the operator definitions and the
underlying algorithm, several drawbacks have been pointed out which mainly lead to unexpectedly
disconnected skeletons [15].

In this work, we propose a novel method to extract the skeleton of unstructured mesh patches
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by a topological thinning process. To figure out the issues of skeletonization of heterogeneous and
arbitrary triangulated meshes, we extend the concepts introduced in [21]. The presented approach
herein strictly relies on the mesh connectivity to achieve the extraction of the final skeleton. There-
fore, for the sake of understanding, the basic method of Rössl et al. is described in Section 3.2
with an assessment of its abilities and drawbacks. Section 3.3 details the proposed approach and
introduces the additional definitions and the novel algorithm. The results of our method including
tests on irregular meshes as well as on the performance of the algorithm are shown in Section 3.4.
Finally, an application to feature line detection is presented in Section 3.5.

3.2. Basic notions and definitions.

3.2.1. Position of the problem. Let S be an arbitrary manifold surface represented by an unstruc-
tured mesh patch M such as M = (V, E , T ). The sets V, E , and T correspond, respectively, to
the vertices, the edges, and the triangles composingM, the piecewise linear approximation of S.
The vertices are denoted by pi, with i ∈ [0;n[ and n = |V| being the total number of vertices of
M. The neighborhood N of a vertex pi is then defined as following:

(3.1) N (pi) = {qj | ∃ a pair (pi, qj) or (qj , pi) ∈ E}.

In such a case, mi = |N (pi)| represents the total number of neighbors of pi.

Let now consider a binary attribute F on each vertex of V. The set R ⊆ V is then written as
follows:

(3.2) ∀pi ∈ R ⇐⇒ F (pi) = 1.

The attribute F may be defined from beforehand process such as a manual selection, or a thresh-
olding based on geometrical properties (triangle area, principal curvatures, etc.). Then, an edge
e = (p, q) belongs to R if and only if p, q ∈ R. Similarly, a triangle t = (p, q, r) belongs to R if and
only if p, q, r ∈ R.

The main objective is to finally develop a technique to extract the skeleton of the set R by using
a topological thinning based on the mesh connectivity.

3.2.2. The existing approach. The skeletonization algorithm introduced by Rössl et al. consists in
an iterative constraint thinning. This relies on a classification of each vertex of R. The authors
proposed then three vertex types and c(pi), the complexity of the vertex pi such as:

(3.3) c(pi) =
mi−1∑
j=0
|F (qj)− F (qk)|,

where k = j + 1 mod mi and qj , qk ∈ N (pi).

Definition 1. A vertex pi is considered as complex if and only if c(pi) ≥ 4. The set of all complex
vertices is named C.

A complex vertex pi thus potentially corresponds to a part of a skeleton branch if c(pi) = 4, or a
connection through several branches if c(pi) > 4.

Definition 2. A vertex pi is marked as center if and only if and N (pi) ⊆ R. The set of all center
vertices is named E.

Definition 3. A vertex pi is called disk if and only if ∃qj ∈ N (pi), qj ∈ E that is a center. The
set of all disk vertices is named D.

A disk vertex corresponds to a simple point: a point that does not modify the expected skeleton
topology if it is removed [6]. We denote X the complementary of the set X in the region R.

Definition 4. The skeletonization operator of R is defined as a constrained thinning:

(3.4) skeletonize(R) = R \ (D ∩ C ∪ E).
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After applying the skeletonization operator until idempotence on R, the set of the remaining
vertices, corresponding to the final skeleton, is called SkR. During each pass, the skeletonization
operator removes the boundary disk vertices. Figure 3.1 illustrates the execution of the algorithm.
After obtaining the skeleton SkR of R, it is possible to remove the smallest branches. This last
operation is called pruning and defined as follows:
(3.5) prune(SkR) = SkR \ C.
This pruning step is shown by Figure 3.1 (d).

Figure 3.1: Illustration of the Rössl et al. algorithm. From left to right: (a) a
set of vertices R, (b) classification of R, (c) thinning until idempotence, and (d)
resulting skeleton after pruning.

3.2.3. Result assessment. Due to the simplicity of the used operators, the computational time of
the Rössl et al. method is very low, and the skeleton extraction is thus almost instantaneous on
meshes composed of 50K triangles. However, the accuracy and the continuity of the obtained
skeleton deeply depends on the mesh configuration. In other words, a same set R defined on
two different triangulations of S could lead to skeletons with two topologies drastically different.
Moreover, the lack of continuity also occurs in the case of particular configurations that are shown
in Figure 3.2 because the removal of disk vertices can modify the topology of the skeleton. Fig-
ure 3.3 illustrates the unexpected results and disconnections generated by the execution of the
skeletonization. Once the vertices P1 and P2 are removed (b), the skeleton becomes disconnected
at this location (c). However, some vertices would change to complex if a new classification step
was applied. This kind of vertices represents relevant points in a topological point of view and
thus, should not be deleted.

Another issue occurs since pruning is applied: the ending vertices of the skeleton are removed. As
a matter of fact, when the set R contains no center and no complex vertex, the pruning operator
removes all the vertices. This case is illustrated by Figure 3.4.

3.3. A skeletonization method for any arbitrary triangulated mesh. Both a new defini-
tion of particular vertices and a new algorithm have been elaborated to solve the disconnection
issues previously raised up in Section 3.2. These two key points of the approach we propose are
successively presented below.

3.3.1. Additional definitions. The different classes of vertices proposed by Rössl et al. aim at
describing the topology of R. However, they are not sufficient as there are still vertices that are
unmarked and that are then not considered in the skeletonization. For this reason, we introduce
the outer class.
Definition 5. A vertex pi is marked as outer if and only if F (pi) = 1 and pi /∈ (C ∪D ∪E). The
set of outer vertices is named O and is defined as follows:
(3.6) O = R \ (C ∪D ∪ E)
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Figure 3.2: Example of unexpected results by applying the Rössl et al. method.
From left to right: (a) the set of feature points R, (b) classification of R, (c)
skeletonization of R, (d) resulting skeleton after pruning.

Figure 3.3: Execution of the skeletonization operator [21]: (a) vertex classification,
(b) execution of the algorithm, (c) final skeleton with a broken topology.

Figure 3.4: Example of a particular configuration: while the vertices of R are not
classified, they will be deleted by the pruning operator of Rössl et al.

As it has been shown previously, a vertex may change from one class to another and, as a side-
effect, this may lead to potential disconnections during the skeletonization. To counteract this
issue, we propose to define a priority between the classes.
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Definition 6. The disk class has a lower priority over the other classes.

If a vertex is already classified as disk, it can change to complex, center or outer if necessary.

3.3.2. Algorithm. If the skeletonization operator defined by Rössl et al. is directly applied to an
unstructured patch, the final result may suffer from disconnections as some disk vertices are deleted
while they characterize the topology of the object. To correct this issue, the algorithm we propose
does not remove all the disk vertices but only those that will not be converted to a different priority
class after the operator application. This requires to add an additional step in the algorithm: at
each application of the skeletonization operator, the class of a vertex is recomputed before its
deletion. For example, if a disk vertex becomes a complex vertex, the vertex is not removed.

However, the resulting skeleton may be too thick using this technique (e.g. if it is composed of
only outer vertices). For this reason, a final cleaning step is added to obtain the expected skeleton.
At this stage, the skeleton must be composed of complex vertices (i.e. the skeleton branches or
nodes) and outer vertices, the ending points of the branches with only one complex vertex in their
neighborhood. Thus, to obtain the final skeleton, a two steps process is applied:

• the outer vertices that have more than two neighbors belonging to R are removed;
• the outer vertices with at most one neighbor belonging to R are kept.

Moreover, as for the skeletonization operator, each vertex complexity change is checked before
removing this vertex. Examples of resulting skeletons are shown in Figure 3.6 and the impact
of the algorithm modification with the update step is presented in Figure 3.7: disk vertices are
deleted (b) after checking their classes (c). During the deletion of P1 and the update step, the
class of P2 changes from disk to complex and P4 from outer to complex. Thus, these vertices are
not removed and the extracted skeleton is fully connected and faithfully characterizes the topology
of R (d). The complete method of skeleton extraction is summarized by the algorithm presented
on Figure 3.5.

3.4. Results. Some results of skeleton extraction on meshes are presented in Figures 3.8, 3.9
and 3.10. The obtained skeletons describe the geometry and the topology of the original set R.
The used meshes are relatively homogeneous in Figure 3.8 while, in Figures 3.9 and 3.10, the
algorithm has been tested on irregular meshes to show the robustness of the proposed approach
to unstructured meshes. It may be noticed that the resulting skeletons are the expected ones and
reflect correctly the topology and geometry of the original set R in a proper way.

Moreover, since the definitions and the operators used to extract the skeleton are very simple, the
computational time of the proposed approach is also very low, even if an additional checking step
has been added. It is possible to process a mesh with 100K vertices in 1 second. The tests have
been ran on an Intel Core 2 Duo 2.8 Ghz.

To complete the algorithm tests and to evaluate the robustness of the proposed approach, an
application dedicated to the feature line detection is presented in the following section.

3.5. Application to feature line detection. The detection of features within 3D models is a
crucial step in shape analysis. It is possible to extract from the surface of an object simple shape
descriptors such as lines (drawn on the surface). Generally, the methods of feature line detection
focus on the estimation of differential quantities and the research of curvature extrema. However,
these techniques are based on third-order differential properties and it leads to a common issue:
they produce disconnected feature lines because of flat and spherical areas and because of the noise
present in data sets. Thus, it is particularly difficult to generate intersections between feature lines.
To overcome these recurrent issues, we propose to apply our method to extract salient lines of a
model.

In order to define sets over triangulated 3D meshes, we use the algorithm proposed by Kudelski et
al. [14]. We compute the mean curvature H through a local polynomial fitting in the least-squares
sense [12]. The binary attribute F is then defined at each vertex pi as follows:

(3.7) Hpi > 0 =⇒ F (pi) = 1.
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repeat

forall the vertices pi 2 R do

if pi is a disk vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change then
delete pi

until idempotence

repeat

forall the vertices pi 2 R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 2 then
delete pi

until idempotence

repeat

forall the vertices pi 2 R do

if pi is an outer vertex then

compute the complexity c(pi) of the vertex

if the priority of pi does not change and if |N (pi)| > 1 then
delete pi

until idempotence

Algorithm 1: Extraction of the skeleton

11

Figure 3.5: Extraction of the skeleton.

Figure 3.6: Illustration of the proposed approach: (a) region R, (b) vertex clas-
sification, (c) execution of the thinning algorithm with update, (d) final skeleton
fully connected.

Finally, the objective is to thin the set, corresponding to potential feature parts of the mesh, in
order to obtain lines describing the geometry and the topology of the object.

Figure 3.11 illustrates the process of feature line detection. The obtained characteristic lines are
fully connected and describe accurately the topology of the sets. Then, due to the use of second-
order differential properties (i.e., the mean curvatures), the feature extraction is more robust.
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Figure 3.7: Detailed view of the thinning process: (a) vertex classification, (b) ex-
ecution of the skeletonization operator, (c) update of vertex classes after deletion,
(d) final skeleton.

Figure 3.8: Application of the skeletonization algorithm on regular triangulated
3D meshes.

Figure 3.9: Skeleton extraction on irregular 3D meshes.

Moreover, this type of approach allows to generate intersections between feature lines, which is
not possible with classical approaches (Figure 3.12).
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their financial support of the study exposed section 2 and Jean Borgomano and Yves Guglielmi of
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advice for the second application (section 3). The models in section 3.4 were provided courtesy of
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4. Conclusion

We illustrated the discrete curvatures concepts with two applications. In the first one, our
algorithm proposes an alternative to vertex clustering simplification methods and to iterative edge
collapse methods, by a compromise between both approaches. Regarding the results presented
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Figure 3.10: Extraction of the skeletons on meshes with mixed and unstructured meshes.

in section 2.5, this objective is reached. The main interest of this approach is to provide results
of high quality (very similar to those obtained by an iterative edge collapse method) but with
lower running times (by factors around 3 and up to 5) and memory consumption. Actually, our
algorithms behaves well as for the average errors between the original and the simplified mesh and
the maximal errors are significantly reduced compared to [11]. Moreover, the heuristic we apply in
order to avoid the well known topological problems resulting from simplification based on vertex
clustering proves quite efficient.

Our second application is an efficient and general new algorithm to extract the skeleton of a set
R defined on a triangulated mesh by topological thinning. This approach relies on the definitions
presented by Rössl et al. [21]. However, the latter generates, for some mesh configurations, unex-
pected skeletons that are generally more disconnected than they should. To overcome this issue,
an additional definition of vertex categories has been added. Then, we have improved the thinning
process by integrating a priority between vertex classes. Tests applied on different categories of
meshes illustrate the efficiency of the approach. As future work, a formal proof based on [5] and
issued from the notion of simple vertices (by analogy to simple points) may need to be considered.
The Rössl et al. article does not include formal validations because the vertices classification is
incomplete. With the changes made, the disk vertices truly correspond to simple points lying on
a discrete 2-manifold. Thus it will be possible to transpose the notion of geodesic neighborhood
to define topological numbers associated with simple vertices. A second prospect is related to the
position of the skeleton nodes. Indeed, the defined operators do not integrate any geometrical
information and the extraction of the skeleton only relies on a one-ring neighborhood. However,
as the position of the skeleton is generally easier to correct than the topology, post-processing
steps could be envisaged to optimize the skeleton position. In this way, the resulting skeleton will
describe in a better way both the topology and the geometry of the set lying on the mesh.

Even if interesting and relevant results can already be obtained, we are aware than many
theoretical works a practical experiments are still required to handle the open issues linked to
large and noisy discrete objet analysis.

47



A. Bac, J.-L. Mari, D. Kudelski, N.-V. Tran, S. Viseur and M. Daniel

Figure 3.11: Algorithm of feature lines extraction: (a) curvature estimation, (b)
definition of the set R, (c) extraction of lines from R by the proposed thinning
approach.

Figure 3.12: Comparison of results obtained from feature detection applied on Dinosaur.
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