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The Gromov-Hausdorff distance: a brief tutorial on
some of its quantitative aspects

Facundo Mémoli

Abstract
We recall the construction of the Gromov-Hausdorff distance. We concentrate on quan-

titative aspects of the definition and on quantitative properties of the distance .

1. Introduction

Modeling datasets as metric spaces seems to be natural for some applications and concepts
revolving around the Gromov-Hausdorff distance —a notion of distance between compact metric
spaces— provide a useful language for expressing properties of data and shape analysis methods.

These notes are based on a talk given during the conference “Discrete Curvature” held in Luminy
in November 2013.

Notation and background concepts. The book by Burago, Burago, and Ivanov [2] is a valuable
source for many concepts in metric geometry. We refer the reader to that book for any concepts
not explicitly defined in these notes.

We let M denote the collection of all compact metric spaces. Recall that for a given metric
space (X, dX) ∈ M, its diameter is defined as diam (X) := maxx,x′∈X dX(x, x′). Similarly, the
radius of X is defined as rad (X) := minx∈X maxx′∈X dX(x, x′).

For a fixed metric space (Z, dZ), we let dZH denote the Hausdorff distance between (closed)
subsets of Z.

We will often refer to a metric space (X, dX) by only X, but the notation for the underlying
metric will be implicitly understood to be dX . Recall, that a map ϕ : X → Y between metric spaces
(X, dX) and (Y, dY ) is an isometric embedding if dY (ϕ(x), ϕ(x′)) = dX(x, x′) for all x, x′ ∈ X. The
map ϕ is an isometry if it is a surjective isometric embedding.

2. The definition

The goal is to measure distance between two given abstract compact metric spaces. In general,
these two spaces may not be readily given as subsets of a common metric space. In this case, the
following construction by Gromov [4] applies.

Given (X, dX) and (Y, dY ) inM one considers any “sufficiently rich” third metric space (Z, dZ)
inside which one can find isometric copies of X and Y and measures the Hausdorff distance in
Z between these copies. Finally, one minimizes over the choice of the isometric copies and Z.
Formally, let Z, φX : X → Z and φY : Y → Z be respectively a metric space and isometric
embeddings of X and Y into Z. Then, the Gromov-Hausdorff distance between X and Y is
defined as
(2.1) dGH(X,Y ) := inf

Z,φX ,φY

dZH
(
φX(X), φY (Y )

)
.
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Theorem 1 ([4]). dGH is a legitimate distance on the collection of isometry classes ofM.

From the practical point of view this definition might not look appealing. As we recall below,
there are other more computational suggestive equivalent definitions whose implementation has
been explored. But now we try to interpret the definition we have given so far.

2.1. An example. Consider the metric spaces X consisting exactly of three points at distance 1
from each other, and Y consisting of exactly one point. Notice that X and Y can be simultaneously
embedded into R2 in an isometric way so that Z = R2 is a valid choice in (2.1) above. The maps
φX and φY represent the relative positions of X and Y in the plane.

By homogeneity, we can assume that the embedding of X is fixed. When choosing φY one
notices that the optimal relative position of q := φY (Y ) with respect to ∆ := φX(X) happens
when q is the center of the (equilateral) triangle ∆. In that case, the Hausdorff distance in (2.1)
is δ0 := 1√

3 and we conclude that dGH(X,Y ) ≤ δ0. One would be tempted to think that δ0 is in
fact equal to Gromov-Hausdorff distance between X and Y but this is not the case!

The same construction that we did above for R2 can in fact be done on the model hyperbolic
two-dimensional space Hκ of curvature −κ for any κ ≤ 0. As κ→ −∞, the (geodesic interpolation
of the) triangle ∆ becomes ’thinner’ and intuitively, the Hausdorff distance δκ between the optimal
embeddings in Hκ will decrease as κ decreases.

One can in fact consider the following target metric space: Z∞ consists of four points p1, p2, p3,
and p such that dZ(pi, pj) = 1 for i 6= j and dZ(pi, p) = 1

2 for all i. This metric space with four
points can be regarded as a subset of the real tree (geodesic) metric space below:

p1

p

p2p3

0.5

0.50.5
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This metric space can be regarded as an extreme case of the construction involving the Hκ that
was described above. The interesting fact is that if we let φX(X) = {p1, p2, p3} and φY (Y ) = {q},
then δ∞ := dZ∞H

(
φX(X), φY (Y )

)
= 1

2 which is strictly smaller than δ0! and thus proves that

dGH(X,Y ) ≤ 1
2 <

1√
3
.

One can in fact check that δ∞ < δκ ≤ δ0 for all κ ∈ [0,∞). In any case, as we recall in Corollary
5 below, dGH(X,Y ) is always bounded below by 1

2 |diam (X) − diam (Y ) |. Since in the present
case diam (X) = 1 and diam (Y ) = 0, we obtain that dGH(X,Y ) ≥ 1

2 which together with
the reverse inequality obtained above implies that in fact, for the example under consideration,
dGH(X,Y ) = 1

2 !

2.2. A simplification. Kalton and Ostrovskii [5] observed that one can equivalently define the
Gromov-Hausdorff distance between X and Y by considering Z in (2.1) to be the disjoint union
X tY together with any metric d such that d|X×X = dX and d|Y×Y = dY . Let D(dX , dY ) denote
the set of all such metrics on X t Y . Then, they observe that

(2.2) dGH(X,Y ) = inf
d∈D(dX ,dY )

d
(XtY,d)
H

(
X,Y

)
.

This expression for the Gromov-Hausdorff distance seems more appealing for the computation-
ally minded: imagine that X and Y are finite, then the variable d in the underlying optimization
problem can be regarded as a matrix in R|X|×|Y |. If we assume that |X| = |Y | = n then the
number of linear constraints that each d in D(dX , dY ) must satisfy is of order n3 (all triangle
inequalities). Even more explicitly, the optimization problem over D(dX , dY ) that one must solve
in practice is (cf. [7]) mind J(d) where

J(d) := max
(

max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)
)
.

The complexity from the original definition (2.1) is now hidden in the fact that J(·) is highly
non-linear.

Going back to the example discussed in 2.1, one can state that in the context of (2.2), the
optimal metric on X t Y is

d∗ :=


0 1

2
1
2 1

1
2 0 1

2 1
1
2

1
2 0 1

1 1 1 0

 .
2.3. The case of subsets of Euclidean space. Even if we saw in Section 2.1 above that when
X and Y are subsets of Rd the optimal Z in (2.1) may not be Rd, one can still relate dGH(X,Y )
with some natural notion of distance for subsets of Euclidean space. Doing this provides more
insight into as to how the Gromov-Hausdorff distance operates in situations for which we already
have a well developed intuition.

An intrinsic approach to comparing two subsets X and Y of Rd would be to regard them as
metric spaces by endowing them with the restriction of the ambient space metric: dX(·, ·) = ‖·−·‖
etc. So, one can consider dGH(X,Y ) as a possible notion of dissimilarity between X and Y .

Another notion of dissimilarity that is frequently considered in shape and data analysis arises
from the Hausdorff distance modulo rigid isometries and constitutes an extrinsic approach: let
E(d) denote the group of isometries of Rd and define

dR
d,rigid
H (X,Y ) := inf

T∈E(d)
dR

d

H
(
X,T (Y )

)
.

Since in this case, one can always choose Z = Rd in (2.1) above, one immediately sees that
dGH(X,Y ) ≤ dR

d,rigid
H (X,Y ). Even if we already saw in Section 2.1 that the equality cannot take

place in general, one could hope that for some suitable C > 0, dR
d,rigid
H (X,Y ) ≤ C · dGH(X,Y )

for all X,Y ⊂ Rd compact. Interestingly, however, this cannot happen! Consider X = [−1, 1].
Fix 0 < ε � 1 and let fε(x) := |x| ·

√
ε. Let Yε be the set {(x, fε(x));x ∈ [−1, 1]}. Notice that

rad (X) = 1 and rad (Yε) =
√

1 + ε.
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x-3 -2 -1 0 1 2 3

Yε

X

√
ε

In any case, it is clear that for ε > 0 small enough, dR
d,rigid
H (X,Yε) =

√
ε

2 . However, since by
Proposition 6 and Corollary 4 below,

• dGH(X,Yε) ≥ 1
2 |rad (X)− rad (Yε) | = 1

2 (
√

1 + ε− 1) ≥ ε
2+2
√

2 and

• dGH(X,Yε) ≤ 1
2 sup|x|6=|x′| |x−x′|·

(√
1 + ε ·

(
|x|−|x′|
x−x′

)2
−1
)
≤ ε, since

∣∣|x|−|x′|∣∣ ≤ |x−x′|
for all x, x′ ∈ X.

It follows that dGH(X,Yε) is of order ε and therefore no constant C > 0 will guarantee that
C · dGH(X,Yε) ≥ dR

d,rigid
H (X,Yε) for all 1� ε > 0!

What does hold for this construction is that C ·
(
dGH(X,Yε)

)1/2 ≥ dR
d,rigid
H (X,Yε) for some

constant C > 0. It turns out that this is not an isolated phenomenon:

Theorem 2 ([6]). For each natural number d ≥ 2 there exists cd > 0 such that for all X,Y ∈ Rd
one has

dGH(X,Y ) ≤ dR
d,rigid
H (X,Y ) ≤ cd ·M1/2 ·

(
dGH(X,Y )

)1/2
,

where M = max(diam (X) ,diam (Y )).

2.4. Another expression and consequences. For two sets X and Y let R(X,Y ) denote the
set of all correspondences between X and Y , that is, sets R ⊆ X × Y such that π1(R) = X and
π2(R) = Y . In general, we will refer to any non-empty set R of X × Y as a relation between X
and Y . Obviously, all correspondences are relations.

The distortion of a relation R between the metric spaces (X, dX) and (Y, dY ) is defined as the
number

dis(R) := sup
(x,y),(x′,y′)∈R

∣∣dX(x, x′)− dY (y, y′)
∣∣.

Notice that given a function ϕ : X → Y one can define the relation Rϕ := {(x, ϕ(x));x ∈ X}, and
in that case we write dis(ϕ) := dis(Rϕ) = supx,x′∈X

∣∣dX(x, x′)− dY (ϕ(x), ϕ(x′))
∣∣. Similarly, when

ψ : Y → X is given, it induces the relation Rψ := {(ψ(y), y); y ∈ Y }. Note that the structure of
Rϕ is different from the structure of Rψ.

Now, when a map ϕ : X → Y and a map ψ : Y → X are both specified, we consider the relation
Rϕ,ψ := Rϕ

⋃
Rψ and note that in fact Rϕ,ψ is actually a correspondence between X and Y .

Furthermore, one can explicitly compute that
dis(Rϕ,ψ) = max

(
dis(ϕ),dis(ψ), C(ϕ,ψ)

)
,

where C(ϕ,ψ) := supx∈X,y∈Y
∣∣dX(x, ψ(y)) − dY (ϕ(x), y)

∣∣. Notice that if C(ϕ,ψ) < η for some
η > 0, then

∣∣dX(x, ψ(y))− dY (ϕ(x), y)
∣∣ < η for all (x, y) ∈ X × Y . In particular, for x = ψ(y), it

follows that dY (ϕ ◦ ψ(y), y) < η for all y ∈ Y . Similarly one can obtain dX(x, ψ ◦ ϕ(x)) < η for
all x ∈ X. These two conditions are often interpreted as meaning that ϕ and ψ are close to being
inverses of each other. This proximity is quantified by η.

An interesting and useful characterization of the Gromov-Hausdorff distance based on optimiza-
tion over correspondences is the following:

Theorem 3 ([5]). For all X,Y ∈M one has that

dGH(X,Y ) (I)= 1
2 inf
R∈R(X,Y )

dis(R) (II)= 1
2 inf
ϕ,ψ

dis(Rϕ,ψ).
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Corollary 4. Let X be a set and d and d′ be any two metrics on X. Then,

dGH((X, d), (X, d′)) ≤ 1
2 sup
x,x′∈X

∣∣d(x, x′)− d′(x, x′)
∣∣.

The theorem above is significant for several reasons. First of all, (I) indicates that solving for
the Gromov-Hausdorff distance between two finite metric spaces is an instance of a well known
combinatorial optimization problem called the bottleneck quadratic assignment problem or bQAP.
The bQAP is NP-Hard and furthermore, computing any (1 + ε) of the optimal solution is also
NP-Hard for any ε > 0 [12]. See [9, 10, 1] for some heuristic approaches.

A second observation stemming from the equality (II) in the theorem is the fact that since the
term C(ϕ,ψ) acts as a coupling term in the optimization

dGH(X,Y ) = 1
2 inf
ϕ,ψ

max
(
dis(ϕ),dis(ψ), C(ϕ,ψ)

)
,

one could conceive of dropping it from the expression above yielding

dGH(X,Y ) ≥ 1
2 max

(
inf
ϕ

dis(ϕ), inf
ψ

dis(ψ)
)

=: d̂GH (X,Y ) .

It is important to notice that computing d̂GH (X,Y ), which we call the modified Gromov-Hausdorff
distance [8], leads to solving two decoupled optimization problems, a feature which is desirable in
applications. However, the computational complexity of the problems of the type infϕ dis(ϕ) could
still be high. We will explore some interesting structure that arises from this modified definition
in the next section but for now we will make one more observation based on the expression given
by Theorem 3.

From equality (I) it follows that the Gromov-Hausdorff distance between any compact metric
space and the metric space consisting of exactly one point is dGH(X, ∗) = 1

2 diam (X). As a
corollary from Theorem 1 and this observation one has

Corollary 5. For all X,Y ∈M, dGH(X,Y ) ≥ 1
2
∣∣diam (X)− diam (Y )

∣∣.
Proof. The inequality dGH(X,Y ) ≥

∣∣dGH(X, ∗)−dGH(Y, ∗)
∣∣ is guaranteed by the triangle inequality

for the Gromov-Hausdorff distance. The remark preceding the statement completes the proof. �

A similar lower bound for the Gromov-Hausdorff distance arises from considering the radius of
metric spaces:

Proposition 6 ([8]). For all X,Y ∈M, dGH(X,Y ) ≥ 1
2
∣∣rad (X)− rad (Y )

∣∣.
3. The modified Gromov-Hausdorff and curvature sets

It could appear plausible that by dropping the coupling term C(ϕ,ψ) in the optimization above
one might have lost some of the nice theoretical properties enjoyed by the Gromov-Hausdorff
distance. This is not the case, and in fact the modified Gromov-Hausdorff retains many of these
good properties:

Theorem 7 ([8]). The modified Gromov-Hausdorff distance satisfies:
(1) d̂GH is a legitimate metric on the isometry classes ofM.
(2) dGH(X,Y ) ≥ d̂GH (X,Y ) for all X,Y ∈M.

(3) dGH and d̂GH are topologically equivalent within dGH-precompact families ofM.

It is however interesting that the equality in item (2) does not take place in general. In fact, [8]
provides a counterexample.

3.1. Curvature sets. Gromov [4] defines for each n ∈ N the curvature sets of X ∈ M in the
following way: let Ψ(n)

X : X×n → Rn×n be the matrix valued map defined by (x1, . . . , xn) 7→
((dX(xi, xj)))ni,j=1. This map simply assigns to each n-tuple of points its distance matrix: the
matrix arising from restricting the metric on X to the given n-tuple. Then, the n-th curvature set
of X is

Kn(X) :=
{

Ψ(n)
X (x1, . . . , xn); (x1, . . . , xn) ∈ X×n

}
.
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In colloquial terms, curvature sets are just ‘bags’ containing all the possible distance matrices of a
given size arising from points sampled from X.

For example, when n = 2, K2(X) contains the same information as {dX(x, x′);x, x′ ∈ X} ⊂ R+.
In contrast, K3(X) contains all ‘triangles’ from X and this particular case suggest one possible
justification for the name ‘curvature sets’. Indeed, let X be a smooth planar curve. Consider any
three points x1, x2 and x3 on X close to each other. Then, if a = ‖x2 − x1‖, b = ‖x1 − x3‖, and
c = ‖x1 − x2‖, the inverse of the radius R of the circle circumscribed to the triangle ∆x1x2x3

admits an explicit expression in terms of a, b and c: R−1 = 4 S(a,b,c)
a b c where S(a, b, c) is the area

of the triangle as given by Heron’s formula.1 The crucial observation is that R can be computed
exclusively from the information contained in K3(X). Now, by an argument involving a series
expansion [3], as a, b, c → 0 R−1 converges to the curvature κ of X at the point of coalescence of
x1, x2, x3.

Curvature sets absorb all the information that one needs in order to determine whether two
compact metric spaces are isometric or not.

Theorem 8 ([4]). Let X,Y ∈ M. Then, X and Y are isometric if and only if Kn(X) = Kn(Y )
for all n ∈ N.

Constructions similar to curvature sets have also been considered by Peter Olver in the context
of subsets of Euclidean space [11].

An example: Curvature sets of spheres. We illustrate the definition with an example from [8].
Consider first the case of the standard circle S1 endowed with the angular distance. We will
exactly characterize K3(S1). For that purpose first consider any embedding of S1 into R2 and
observe that for any three points on S1 exactly one the following two conditions holds: (a) there
exists a line through the center of the circle such that the three points are contained on one side
of the line; (b) no such line exists.

Case (a) means that one of the three distances defined by the three points must forcibly be
equal to the sum of the other two distances. Case (b) implies that the sum of the three distances
is exactly 2π. Also note that, by symmetry, case (a) unrolls into three different cases depending on
the identity of the distance that is equal to the sum of the other two. Each of these four situations
gives a linear relation between the three distances! Thus, we obtain that K3(S1) is isomorphic to
the tetrahedron with vertices (0, 0, 0), (0, π, π), (π, 0, π), and (π, π, 0).

The case of S2, when endowed with the standard geodesic distance, is similar and one can prove
that K3(S2) is the convex hull of K3(S1).

3.2. Comparing curvature sets? An interesting property of curvature sets is that they are
isometry invariants of metric spaces which ’live’ in fixed target spaces. More precisely, for any
X,Y ∈M, Kn(X) and Kn(Y ) are both subsets of Rn×n.

With the purpose of discriminatingX and Y one may conceive of comparing Kn(X) and Kn(Y ).
Since they are both (compact) sub-sets of Rn×n one could compute the Hausdorff distance between
them. For this we first endow Rn×n with the distance d`∞(A,B) := maxi,j |ai,j−bi,j | for A = ((ai,j))
and B = ((bi,j)) in Rn×n. Then, we compute

dn(X,Y ) := 1
2 d

Rn×n

H
(
Kn(X),Kn(Y )

)
,

and use this number as an indication of how similar X and Y are. The best possible measure of
dissimilarity that this sort of idea suggests is to consider

d∞(X,Y ) := sup
n∈N

dn(X,Y ).

Theorem 8 guarantees that d∞ defines a legitimate metric onM modulo isometries.
Interestingly, one has the following ’structural theorem’ for the modified Gromov-Hausdorff

distance in terms of curvature sets:

Theorem 9 ([8]). For all X,Y ∈M, d̂GH (X,Y ) = d∞(X,Y ).

1S(a, b, c) = 1
4

(
(a + b + c)(a − b + c)(a + b − c)(−a + b + c)

)1/2.
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This theorem provides a useful path for computing estimates to the Gromov-Hausdorff dis-
tance. Furthermore, the theorem suggests a way of ’slicing’ the computation/approximation of
the Gromov-Hausdorff distance between finite metric spaces, since one might want to consider
computing dn for a fixed n and hope that this provides enough information for discriminating
spaces within a given family. For finite spaces, the computation of dn would incur a polynomial
cost, albeit of a high order. There are some known classes of metric spaces C ⊂ M that are
characterized up to isometry by Kn(·) for some finite n = n(C), see [8].

A lower bound for dGH(S1, S2). Theorems 7 item (2) and 9 then guarantee that

dGH(S1, S2) ≥ d3(S1, S2) = 1
2d

R3×3

H
(
K3(S1),K3(S2)

)
=: ξ.

Since K3(S2) is the convex hull of K3(S1), K3(S1) ⊂ K3(S2), and therefore,

ξ = 1
2 max
p∈K3(S2)

min
q∈K3(S1)

‖p− q‖∞ = min
q∈K3(S1)

‖g − q‖,

where g = π
2 (1, 1, 1) is the center of K3(S2). But now, the center c = 2π

3 (1, 1, 1) of the face of
K3(S1) determined by π (0, 1, 1), π (1, 0, 1), and π (1, 1, 0) is at minimal `∞ distance from g so that
ξ = 1

2 |
π
2 −

2π
3 | =

π
12 , and we find the lower bound dGH(S1, S2) ≥ π

12 .

4. Discussion and outlook

The Gromov-Hausdorff distance offers a useful language for expressing different tasks in shape
and data analysis. Its origins are in the work of Gromov on synthetic geometry. For finite
metric spaces, the Gromov-Hausdorff distance leads to solving NP-Hard combinatorial optimization
problems. A related to construction is that of Gromov-Wasserstein distances which operate on
metric measure spaces [13, 7]. In contrast to the Gromov-Hausdorff distance, the computation
of Gromov-Wasserstein distances leads to solving quadratic optimization problems on continuous
variables. The space of all metric measures spaces endowed with a certain variant of the Gromov-
Wasserstein distance [7] enjoys nice theoretical properties [14]. It seems of interest to develop
provably correct approximations to these distances when restricted to some suitable subclasses of
finite metric spaces.
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