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Semidirected random polymers: Strong disorder
and localization

Nikolaos Zygouras
Abstract

Semi-directed, random polymers can be modeled by a simple random walk on Zd in a
random potential -(λ + βω(x))x∈Zd , where λ > 0, β > 0 and (ω(x) )x∈Zd is a collection of
i.i.d., nonnegative random variables. We identify situations where the annealed and quenched
costs, that the polymer pays to perform long crossings are different. In these situations we
show that the polymer exhibits localization.

We consider a simple random walk (Xn)n≥1 on Zd, d ≥ 1, which moves among an i.i.d. random
potential (−(λ + γω(x)))x∈Zd . We denote by Px the distribution of the random walk, when it
starts from x ∈ Zd (we do not include the subscript when x coincides with the origin) and by P the
distribution of the collection of the i.i.d. variables (ω(x))x∈Zd . We assume that ω is nonnegative,
does not concentrate on a single point and that E[ω2] < ∞. Moreover, the parameters λ, γ are
considered to be positive. We are interested in the interaction between the random walk and the
random potential and how this affects the behavior of the simple random walk. The interaction is
described by the Gibbs measure on paths

dPλ,γL,ω := 1
Zλ,γL,ω
e−
∑TL

n=1
(λ+γω(Xn))dP,

where TL := inf{n : (Xn−X0)·ê1 ≥ L} and Zλ,γL,ω := E[e−
∑T l̂

L
n=1

(λ+γω(Xn))] is the partition function.
Notice that the one end of the polymer is fixed at zero, while the other is constrained to lie on
a hyperplane at distance L from the origin. Moreover, the presence of the positive parameter λ
induces a drift on the path towards that hyperplane. This presence of a preferred direction explains
the terminology semidirected. Our goal is to get a qualitative description of the distribution of
the end point of the semidirected random polymer, i.e. of the measure Pλ,γL,ω(X(TL) = x), for
x ∈ HL := {x : x · ê1 = L}. The macroscopic behavior of this measure, as L tends to infinity can
be either a delocalized (or diffusive) or a localized one depending on the strength of the disorder γ
(the parameter λ is fixed) or the dimension. The diffusive behavior is established in [3], when the
dimension is d ≥ 4 and the strength of the disorder is low, i.e. γ is small. Here we are interested
into the localized behavior. Before proceeding into the detailed statements let us mention that the
path properties of the semidirected random polymer are in close connection with what is called
the Lyapounov norms. These norms measure the cost to perform the crossing from the origin to
the hyperplane at distance L. The quenched Lyapounov norm in direction ê1 is defined as

α∗λ,γ := − 1
L

logZλ,γL,ω.

The path behavior of the polymer appear to be intimately connected to the relation of the quenched
Lyapounov norm to the annealed one, which is defined as

β∗λ,γ := − 1
L

log EZλ,γL,ω.

In [5] we show that
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Theorem 1. If α∗λ,γ > β∗λ,γ then P− a.s. we have that

lim sup
L→∞

sup
x : x·ê1=L

Pλ,γL,ω(x) > 0.

This result extends the picture valid in directed polymers [4] and should be contrasted with
the one in [3], where the diffusive behavior was established in the regime of parameters where the
annealed and the quenched Lyapounov norms coincide. In [5] we also identify situations where the
inequality of the norms holds. In particular we have

Theorem 2. Assume that the disorder ω is nonnegative, does not concentrate on a single point
and E[ω2] <∞.

A. For any λ > 0, β > 0 and d = 2, 3 we have that α∗λ,γ > β∗λ,γ .
B. The strict inequality between the annealed and quenched norms is also valid in any dimension,

if γ is large enough and the disorder satisfies the additional assumptions that essinf (ω) = 0 and
P(ω = 0) < pd, where pd is the critical probability for site percolation in Zd.

Part B. of Theorem 2 is based on a first percolation argument: Assume that β is infinite. If
the zeros of the disorder do not percolate, then the origin will be inside a trap and any path that
has to cross a long distance is doomed to be killed by the potential, while when an annealing is
performed the disorder moves around so that to create a corridor, that will allow the path to move
at long distance.

Part A. of Theorem 2 makes use of the fractional moment method that has been developed in
the context of the random pinning model [1] and has been applied to directed polymer [2].

The heuristics of Theorem 1 are as follows. Consider P̂λ,γL,ω the measure Pλ,γL,ω conditioned on the
path to stay in between the hyperplanes H0 and HL and Bλ,γω the partition function constrained
on this set. The constrained partition function will have the same Lyapounov norms as the
unconstrained one. If these norms are different then for N large enough we have

β∗λ,γ < α
∗
λ,γ ' − 1

NL
logBλ,γω (NL) = − 1

N

N∑
n=1

1
L

log Bλ,γω (nL)
Bλ,γω ((n− 1)L)

≤ − 1
N

N∑
n=1

1
L

log
∑

x∈H(n−1)L

Bλ,γω ((n− 1)L;x)
Bλ,γω ((n− 1)L)

Bλ,γθxω(L)

= − 1
N

N∑
n=1

1
L

log
∑

x∈H(n−1)L

P̂λ,γ(n−1)L,ω(x)Bλ,γθxω(L).(0.1)

If the measure P̂λ,γ(n−1)L,ω(x) does not develop atoms then an ergodic type argument will imply that
the sum inside the logarithm is approximately equal to EBλ,γω (L), when n is large and therefore
the last line in the above will be approximately equal to β∗λ,γ , when L is large, leading to a
contradiction.

References
[1] Giacomin, Giacomin; Lacoin, Hubert; Toninelli, Fabio L.; Marginal relevance of disorder for pinning models.

Comm. Pure Appl. Math. 63 (2010) 233-265.
[2] Lacoin, Hubert; New bounds for the free energy of directed polymer in dimension 1+1 and 1+2. Comm. Math.

Phys. 294 (2010) 471-503.
[3] Ioffe, Dmitry; Velenik, Yvan; Crossing random walks and stretched polymers at weak disorder. arXiv:1002.4289
[4] Vargas, Vincent; Strong localization and macroscopic atoms for directed polymers Prob. Theory Rel. Fields

Volume 138, Numbers 3-4 (2007)
[5] Zygouras, N.; Strong disorder in semidirected random polymers. arxiv.org/abs/1009.2693

Department of Statistics
University of Warwick
Coventry CV4 7AL, UK. • N.Zygouras@warwick.ac.uk

48

mailto:N.Zygouras@warwick.ac.uk

	References

